Telehealth available for follow up as well as new consultations. Please contact us Here
1-818-812-7222 Office Hours: 8:00 AM to 5:00 PM
10 Congress St., Suite #405
Pasadena, CA 91105

Category: flatualence

Medication Accumulation in Gut Bacteria May Curb Drug Effectiveness, Alter Gut Microbiome

October 05, 2021 2:06 pm

NEW YORK (Reuters Health) – Many common medications such as antidepressants, diabetes and asthma drugs can accumulate in gut bacteria, altering bacterial function and potentially reducing drug effectiveness, researchers say. “It was surprising that the majority of the new interactions we saw between bacteria and drugs were the drugs accumulating in the bacteria, because up until now biotransformation (chemical modification) was thought to be the only way that bacteria affect drug availability,” Dr. Kiran Patil of the MRC Toxicology Unit, University of Cambridge, told Reuters Health by email. “We also were surprised to see the stark effect of bioaccumulation on bacterial metabolism and on community composition.” “There will likely be very strong differences between individuals, depending on the composition of their gut microbiota,” he noted. “We saw differences even between different strains of the same species of bacteria.” As reported in Nature, Dr. Patil and colleagues grew 25 common strains of gut bacteria and investigated their interactions with 15 structurally diverse oral drugs. The team identified 70 bacteria-drug interactions, 29 of which had not been previously reported. Seventeen of the newly discovered interactions could be ascribed to bioaccumulation – i.e., bacteria storing the drug intracellularly without chemically modifying it, and in most cases without bacterial growth being affected. To gain additional insight, the team investigated the molecular basis of bioaccumulation of the antidepressant duloxetine. They found that duloxetine binds to several metabolic enzymes and changes the metabolite secretion of the affected bacteria. When tested in a microbial community of drug accumulators and non-accumulators, duloxetine markedly altered the small molecules produced by the drug-accumulating bacteria, which the non-accumulators fed on; this caused an overabundance of consuming bacteria, thereby unbalancing the composition of the community. Further, the team validated their findings in C. elegans; worms grown in bacteria that accumulated duloxetine behaved differently from those grown in bacteria that did not accumulate duloxetine. Summing up, the authors state, “Together, our results show that bioaccumulation by gut bacteria may be a common mechanism that alters drug availability and bacterial metabolism, with implications for microbiota composition, pharmacokinetics, side effects and drug responses, probably in an individual manner.” Dr. Patil added, “Next steps will be to take forward this basic molecular research and investigate how an individual’s gut bacteria tie in with differing individual responses to drugs such as antidepressants – differences in response, drug dose needed, and side effects like weight gain.” “If we can characterize how people respond depending on the composition of their microbiome, then drug treatments could be individualized,” he said. “The clinical relevance will hopefully be clear in the next 2-3 years.” Dr. Libusha Kelly of Albert Einstein College of Medicine in New York City commented on the study in an email to Reuters Health, “This work highlights the broad importance of microbe/drug interactions in drug bioavailability and the unrecognized potential for bioaccumulation of drugs to modify metabolite secretion in microbial communities.” “As the authors note,” she said, “this study in bacterial isolates is only the first step towards understanding how bioaccumulation might influence drug metabolism and microbial community composition in the context of the far more complicated communities of microbes in the human body.”
“There are likely additional, cryptic, ways in which bacteria alter bioavailability and drug metabolism in the human body,” she said. “Furthermore, we do not understand how microbiome/drug interactions influence drug efficacy and safety in individual patients, which limits the clinical utility of our field currently. However, the authors uncover an exciting direction for future research.” Source: https://go.nature.com/3CxioHd Nature, online September 8, 2021. Reuters Health Information © 2021

Flagyl

September 25, 2019 9:07 am

Flagyl is sometimes prescribed for excessive gas and diarrhea. It is an antibiotics that works well on certain bacteria that accumulates in the GI tract and contributes to the gas and the bloating. 

These bad bacteria flourish when patients consume significant and excessive fiber and carbohydrates (sugars, salad, pasta etc.) The FIRST line of defense against flatulence, bloating, and diarrhea should be eleminating the culprits in the diet.  This point can not be stressed enough.   Adding a daily dose of yogurt may improve symptoms due to yogurts probiotic benefits. To be beneficial, Yogurt should contain live bacteria cultures, not contain artificial sweeteners or have a high sugar content.

Artificial sweetness also area source of the excessive gas and should be avoided.

The Flagyl eliminates and reduces the bad bacteria. Along with a Probiotic and healthy dietary choices Flagyl can help to significantly improved or eliminate those symptoms of gas and diarrhea.

Before Flagyl is prescribed, it is important that the diet is critically examined to make sure that the carbohydrates and the fiber as source of gas and bloating is minimized or eliminated. Excessive use of medications that may be needed for other infections should be avoided.

Chronic diarrhea should be evaluated to rule out GI infection with C. diff bacteria or other bacteria or parasite.

 

Additional Information on C. Diff (Clostridium Difficile)  and probiotics.

“Gas problem”

March 25, 2011 3:15 am

Following the Duodenal Switch operation, patients will have more frequent flatulence. The problem can get worse with specific dietary choices. A very simple way of looking at this would be that, in general, Carbohydrates contribute to gas and the fat contributes to causing loose bowel movements. There is a significant overlap and one has to remember that they often accompany each other.
In the majority of cases, when a patient is having a significant “gas problem,” a close investigation of the diet usually identifies the condition. The most frequent culprit is carbohydrates (breads, pasta, etc.). Special attention should also be given to Gluten in other food products. Carbonation should also be avoided. Other less obvious contributing factors may include artificial sweeteners (Splenda). Milk-Lactose can also cause significant gas. If the dietary sources of the “gas problem” have been eliminated, probiotics should then be considered. There is very little published scientific data on this subject that I am aware of. Wasserberg et.al, from The University of Southern California in 2008, published “Bowel Habits after Gastric Bypass Versus the Duodenal Switch Operation”. They concluded: “…Although duodenal switch is associated with more bowel episodes than gastric bypass, the difference is not statistically significant. Bowel habits are similar in patients who achieve 50% estimated body weight loss with duodenal switch surgery or gastric bypass.”
Ara Keshishian, MD, FACS, FASMBS