
The human gut microbiota is a complex and dynamic 
microbial community that is integral to the maintenance 
of health1,2 and the regulation of the host immune sys-
tem3,4. Recent breakthroughs in culture-independent, 
high-throughput profiling have enabled the rapid, 
large-scale quantification of the composition of the 
gut microbial community in health and disease (Fig. 1). 
Alterations of the gut microbiota (that is, dysbiosis) have 
been linked to many diseases and conditions, such as 
obesity5–8 and diabetes mellitus9–12. As a result, modu-
lating the gut microbiota has been viewed as a potential 
source of novel therapeutics for treating diseases that are 
associated with dysbiosis13,14. Nonetheless, the clinical 
translation of microbiota-based therapies has been slow, 
with one of the main obstacles being lack of a mech-
anistic understanding of the metabolic and ecological 
interactions between microorganisms and with the host.

Although a relatively complete atlas of the taxa that 
make up the human gut microbiota has been compiled 
in the past 10 years, much more limited progress has 
been made in elucidating the wiring of the human gut 
ecosystem — that is, the distinct characteristics of indi-
vidual community members and the complex web of 
interactions among them2,8. Sequencing data alone have 
been shown to be inadequate to fully predict microbial 
phenotypes and functions in a community. For example, 
a recent study revealed that 75% of metabolic models of 
gut bacterial species, based on genomics and literature 
information on growth requirements alone, failed to 
predict the growth of the same bacterial species in dif-
ferent media15. Analyses pairing complementary ‘omics’ 

data (that is, metatranscriptomics, metaproteomics and 
metabolomics) with shotgun data arguably have more 
predictive power and are able to assess active species, 
pathways and genes in an ecosystem. However, it is 
not yet possible to (fully) assess the complex ecological 
interactions using ‘omics’ data alone16. Here, we argue 
that a synthetic ecology approach — that is, the study of 
complex microbial systems using synthetic communities 
— could form the solution to this problem.

Synthetic microbial communities are systems of 
known and reduced complexity that are amenable to 
experimental intervention and modelling, enabling a 
systems-level understanding17–19. From a bottom-up 
ecological perspective (going from components to com-
munities), synthetic communities are a way to study how 
microbial community structure emerges (for example, 
through competition and cooperation) and to identify 
the conditions necessary to generate specific interac-
tion patterns (for example, cross-feeding, syntrophy and 
auxotrophy). From a top-down ecological perspective 
(starting with the system), they can answer questions 
about the overall function and the resistance and resilience 
of microbial systems18. The study of synthetic microbial 
communities requires (i) controlled in vitro environ-
ments, (ii) biologically relevant bacterial strains and 
(iii) mathematical models of the ecological interactions  
to simulate and test.

Work on creating human gut-specific, controlled 
in vitro environments, isolating intestinal bacterial strains  
and mathematically modelling gut bacterial com-
munities is currently under way. Still, the use of a 
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synthetic-ecology approach is still relatively new for 
the gut microbiota field. It was once thought that as 
few as ~20% of the human gut microorganisms were 
culturable20, indicating that the design of synthetic 
gut microbial communities would always be limited. 
Now, however, new methods such as culturomics21 
are overturning this paradigm and have inspired a 
culturing renaissance21–24 (Fig. 1). Furthermore, recent 
efforts to sequence the genomes of these cultured gut 

microorganisms21,24 (see also the Human Microbiome 
Project)25 and to assemble complete or nearly com-
plete metagenome-assembled genomes (MAGs) from 
shotgun metagenomes26–28 are improving our ability 
to identify bacterial taxa of interest, down to the strain  
level. The combination of these advances allows us to 
begin designing meaningful, synthetic gut microbial 
communities and study those communities in vitro.

To date and to the best of our knowledge, there have 
been only a handful of studies of in vitro synthetic gut 
microbial communities (with at least two bacterial 
strains), with most of the early studies exploring the 
inhibitory effect of bifidobacterial strains on other gut 
commensals or pathogens29–31. Many of these in vitro 
studies provided some of the first insights on nutri-
tional interactions32 between certain gut bacterial taxa. 
However, we still know very little. If all the strains in the 
different in vitro studies mentioned above are counted 
independently, the interactions of <100 different gut 
microbial strains have been studied experimentally 
(Fig. 2). This number is only a very small fraction of the 
number of cultured gut microorganisms (~5%), and 
it pales in comparison to the number of gut micro
organisms that have been detected in amplicon-based 
metagenomic studies (~0.002%). Currently, we are 
poised to begin filling the gaps between the numbers of 
sequenced, of cultured and of in vitro-tested members 
of the gut microbiota, but the challenge is substantial.

In this Review, we provide an overview of (i) the 
available in vitro experimental systems, (ii) current iso-
lation methods and (iii) mathematical modelling options 
to study synthetic gut microbial communities. With a 
synthetic ecology approach, we can gain a deeper under-
standing of the black box of microbial interactions in 
the gut ecosystem. First, we can identify the functional 
niche and capacity of every isolated gut inhabitant, in a 
wide range of environmental conditions. Next, we can 
begin to disentangle the interactions between major gut 
inhabitants. Lastly, we can begin to study the bottom-up 
and top-down ecology of these synthetic gut microbial 
ecosystems through targeted perturbations of nutri-
ents, small molecules, specific antibiotics, organisms 
(including genetically modified microorganisms) and/or  
metabolite tracking using, for example, stable isotope 
probing33, to identify ecological tipping points34. Such 
knowledge could then be used to improve our under-
standing of the complex gut ecosystem and how we  
can modulate it in order to prevent and treat different 
diseases and conditions associated with dysbiosis.

In vitro systems
In vitro systems are defined and/or engineered envi-
ronments outside of a living organism that provide a 
simple, controlled system to study ecological interac-
tions. Although in vitro experimentation has many dis-
advantages, in particular the lack of host interactions, 
the ability to automate and miniaturize environments 
for high-throughput analyses makes in vitro studies an 
excellent starting point prior to in vivo experimenta-
tion35. For the human gut, several in vitro environments 
have been defined and engineered to study synthetic 
microbial communities (Fig.  3). The most relevant 
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systems range from the classical batch fermenter with 
various modifications, all the way to multistaged con-
tinuous fermenters with or without the addition of com-
ponents to simulate interactions with the human host  
(for example, through the addition of human cells to 
otherwise standard microbial cultivation systems)36.

Batch fermentation. Batch fermentations are the sim-
plest and most commonly used in vitro culture models. 
Batch fermentation experiments are closed systems, with 
all components necessary to initiate microbial growth 
included in a controlled environment at the beginning 

of an experiment. Two commonly used deviations from 
this closed setup, however, include the possibility of pH 
correction and the gradual addition of a key nutrient 
(also known as fed-batch). After addition of the bacte-
rial strain or mixture of strains, the system can be mon-
itored for overall growth and growth by strain. Overall 
growth is often monitored by conventional methods, 
such as plate counts, optical density measurements or 
flow cytometry. In mixed cultures, individual strain 
growth has also been followed using fluorescent mark-
ers, but the number of fluorescent markers previously 
greatly limited the number of strains that could be 
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grown together37–40. More recently, periodic sampling of 
the system and high-throughput amplicon or shotgun 
sequencing has greatly increased the number of strains 
and the complexity of mixed cultures that can be used, 
as a limitation is no longer imposed by the number of 
fluorescent markers37–40. The simplicity of set-up of batch 
fermentations makes them the easiest in vitro culture 
systems to parallelize, enabling high-throughput analy
ses. Nonetheless, a major limitation is that, because 
batch fermentations are closed systems, it is impossible 
to quantify stable states. Examples of standard batch fer-
mentation systems include batch reactors, test tubes, well 
plates and microfluidic droplets (Fig. 3, top left).

Continuous culture systems. Continuous culture sys-
tems, unlike batch fermentations, enable counterbal-
ancing of the inflow and outflow of a medium and, 
thus, the maintenance of cultures in a specific growth 
rate and physiological state. By physically coupling sev-
eral continuous reactors in sequence through overflow 
weirs, several different environmental circumstances 
can be imposed sequentially. For example, alterations 
to pH or residence time in the medium, as well as the 

addition of particular components (such as enzymes 
and bile salts), can be used to simulate conditions in dif-
ferent compartments of the intestinal tract36. However, 
continuous-culture models inoculated with human fae-
cal samples have not been able to reproduce the exact 
in vivo community compositions or microbial commu-
nity states observed in the human gut36, although pro-
gress is being made by immobilizing faecal microbiota 
on gel beads41. A limitation is that, although many of 
the kinetic aspects (that is, transit time characteristics)  
of the human gastrointestinal tract are incorporated 
(with the notable exception of microbial metabolite 
absorption by the human gut), the presence of the 
human host is largely ignored, with certain partial excep-
tions such as including human cell lines or mucus-coated 
beads42. Nonetheless, continuous-culture models are a 
rapid screening tool for xenobiotic transformations and 
the impact of nutraceuticals36. Examples of standard 
continuous-culture systems include chemostats and 
minibioreactor arrays (Fig. 3, top right).

Microtiter well plate cultures. A microtiter well plate for-
mat is a specific type of batch fermentation system that 
offers a cheap, high-throughput way to study multiple 
different microbial interactions in parallel. Using this for-
mat for mixed cultures has previously been shown to be 
a valuable tool when predicting community dynamics in 
the gut from pairwise interactions43. However, due to the 
small volume used in most microtiter well-plate experi-
mental culture models, it is more difficult to control envi-
ronmental conditions (such as pH and nutrient addition) 
than in a full-scale fermenter. Furthermore, there are 
limitations on the amount of sampling possible with such 
systems. Microtiter well plates can potentially be used as 
continuous-culture systems by performing serial trans-
fers44, but it is unclear whether the community dynamics 
monitored in such a setting would be entirely free of the 
influence of fluctuating nutrient concentrations. These 
problems might be mitigated in more elaborate systems 
in the future (and potentially in a high-throughput  
fashion, thanks to advances in microfluidics).

Advances and challenges. Importantly, across all types of 
in vitro culture systems, no truly representative system 
exactly mimicking the in vivo microbiota has yet been 
developed. Steps in this direction have been achieved 
by the gut-on-a-chip model44,45, the HuMiX system46, 
the mini-bioreactor system for growth screening47 and the  
combinatorial growth of strains in microtiter plates, 
although mostly with the aim of following growth through 
optical density and 16S ribosomal RNA (rRNA) sequenc-
ing, with the purpose of mathematical model parame-
terization43. Although efforts are ongoing46, an important 
challenge still lies in further miniaturizing these systems 
and increasing their high-throughput analyses capacity. 
Another challenge is the integration of spatial structure. 
The microbial compositions of communities in the gut 
lumen and mucosa are known to differ48. The latter, which 
is in closer contact with host cells, may have a particularly 
important role in disease development49. The incorpora-
tion of human cell lines in high-throughput fermentation 
systems — for example, through a layer of differentiated 
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Caco-2 cells, such as in the HuMiX system46 — enables 
the investigation of host cellular responses to particu-
lar gut microbial strains or their mixtures, as well as the 
reverse interactions (Fig. 3, bottom).

Overall, given the large number of gut microbiota 
members that still need to be assessed, currently the most 
viable option to start uncovering this complexity is con-
trolled and repeatable in vitro systems. Still, it is worth 
mentioning that the use of living systems as the ‘container’ 
(that is, in vivo experiments) for microbial trials is also 
needed, and most likely would be the next step following 
in vitro experimentation. In vivo experiments are cru-
cial for studying many aspects of ecological interactions, 
ranging from exploring the role of the microbiota in host 
development and immune responses to understanding 
the complex interactions between host dietary or nutri-
tional choices and the gut ecosystem. Most of the current 
in vivo gut microbiota studies have used mice50,51, but 
many host-specific differences between mice and humans 
exist and should not be ignored. These differences include  
immunological differences (for example, type of anti
microbial peptides), which select a different microbiota 
in mice than in humans52,53; transit time; type of food and 
propensity for coprophagy; and macroscopic and micro-
scopic structure of the gut (for example, length and rela-
tive transit time, or the presence of a functional caecum)54. 
Thus, current in vivo experiments are also still limited  
in their capacity to directly predict microbial behaviour in  
the human gastrointestinal tract. However, given the 
obvious unavailability of gnotobiotic humans, the use of 
mice or functionally more equivalent model animals  
(for example, the porcine model) remains our best availa-
ble in vivo option for certain research lines. This said, work 
on incorporating human cell lines in model systems55 and 
organoids56 may fill this gap in the near future, but currently 
all these systems are in the developmental phase.

Isolating the human gut microbiota
After the field almost completely abandoned micro-
bial isolation in favour of the depth and throughput 
offered by DNA-based approaches, one of the ironic 
conclusions of evaluating one and a half decades of 
metagenomics-based research is that microbiologists 
need cultures after all. For most of the challenges as well 
as for the synthetic ecology solutions outlined above, 
the availability of well-documented strain collections is 
a crucial prerequisite. In addition to the anaerobic refer-
ence cultures preserved and catalogued by public micro-
bial resource centres such as the German Collection 
of Microorganisms and Cell Cultures (DSMZ) and 
the Culture Collection University of Gothenburg 
(CCUG), recent years have also witnessed host-specific 
culture repository initiatives such as the Mouse 
Intestinal Bacterial Collection (miBC)57, the Human 
Gastrointestinal Bacteria Culture Collection (HBC)21 
and the Culturable Genome Reference (CGR)44 catalogue 
from human faecal samples (Fig. 2). Still, coverage of 
well-characterized gut species in these culture collections 
is low compared to what is predicted from metagenomic 
inventories. The recently reported reconstruction of 
>150,000 microbial genomes from >9,400 geographi-
cally widespread human metagenomes, encompassing 

intestinal, oral, skin and vaginal body sites, indicated 
that 77% of the resulting species-level genome bins have 
never been described before28. This highlights the con-
tinuing need for improving existing isolation methods 
or for repurposing cell-capturing technologies such as 
droplet microfluidics from other fields.

Increased insight into the reasons why a large fraction 
of gut microorganisms resist cultivation under standard 
laboratory conditions has triggered a series of simple but 
effective modifications to conventional isolation strat-
egies58. The most obvious of these modifications stems 
from the observation that the high phylogenetic diversity 
of the human gut microbiota is mirrored by myriad meta
bolic functions and nutritional preferences. By multi
plexing bacterial isolation conditions through the serial 
addition of specific growth promoters and/or inhibi-
tors, coupled to high-throughput identification with 
MALDI-TOF MS, the so-called culturomics approach 
has broadened the scope of conventional single-medium 
strategies12. According to a recent report59, culturomics 
has resulted in the discovery of 232 novel human gut spe-
cies since 2015. It is worth noting, however, that only a 
small minority (~1–2%) of these newly proposed names 
have so far been validated and thus have official standing 
in prokaryotic nomenclature60, which may compromise 
their future inclusion in strictly curated taxonomic ref-
erence frameworks and prevent effective progress in the 
annotation of metagenomic reads. Surprisingly, recent 
work has challenged the need for a wide range of media;  
a survey15 on the growth preferences of 96 phylogene
tically and metabolically diverse human gut strains 
representing core microbiome species, species used as 
probiotics and enteropathogens demonstrated that  
76 strains (representing 79.2% of all tested strains) were 
able to grow on a single, defined medium. Although this 
observation does not guarantee comparable recovery 
rates during isolation from faecal samples, it suggests that 
laboratories that are not able to roll out a dedicated cul-
turomics pipeline but that do have basic anaerobic incu-
bation infrastructure can also contribute to the discovery 
of new gut bacteria, although less efficiently. Next to 
multiplexing nutritional resources, the supplementation 
of isolation media with (combinations of) antimicrobials 
has been successfully used as a simple modification of 
traditional culturing approaches for the targeted selec-
tion of previously uncultured bacteria23. In this study, 
antibiotics capable of inhibiting or suppressing the 
growth of abundant taxa could select for less abundant 
populations, provided that these populations can grow 
in the presence of the antibiotic. Likely, this particular 
type of modification could be extended to non-antibiotic 
drugs, given the recent observation that some classes of 
human drugs such as antipsychotics may also exhibit 
anticommensal activities and thus selectively inhibit the 
growth of specific members of the gut microbiota61. Even 
prior to the actual isolation stage, simple modifications 
such as the treatment of faecal samples with ethanol, 
which kills ethanol-sensitive vegetative cells but does not 
affect spores, have been shown to unlock novel bacterial 
diversity, including potentially new families62.

An additional opportunity to scale up the isola-
tion and culture collection building of human gut 
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microorganisms comes from the implementation of min-
iaturized, versatile and high-throughput technologies, 
most of which were initially developed for other purposes 
in molecular and cell biology laboratories. Especially, 
single-cell-based approaches in which physical isolation 
or sorting precedes the actual growth stage seem prom-
ising63. As such, a personalized gut microbiota culture 
collection study64 demonstrated that the principle of 
dilution-to-extinction is an interesting approach to capture 
slow-growing and low-abundance gut microorganisms 
that might escape isolation during traditional plating. 
However, to reach the scale and depth of metagenom-
ics, future isolation efforts will require integration in 
automated platforms and dedicated pipelines. Recent 
advances in the analysis and separation of free micro-
bial cells by Raman microspectroscopy65 as well as in the 
physical stochastic confinement of individual cells in 
nanofabricated and microfabricated compartments and 
microfluidic devices66 are two prime examples that may 
pave the way towards the isolation of previously uncul-
tured species and the discovery of novel microbial taxa63, 
as well as being a high-throughput method for inferring 
interactions67. Still, the often-challenging integration 
of such single-cell tools in strictly anaerobic laboratory 
systems has strongly limited the number of successful 
culture-based applications in the human microbiota field.

Mathematical modelling
Next to experimental in vitro work, mathematical mod-
elling can provide further system-level understanding 
and generate hypotheses. Models are mathematical 
representations of our knowledge of a system. A mathe
matical model can describe the behaviour of the gut 
community in altered conditions, and can therefore be 
applied to predicting the effects of perturbations such 
as antibiotic treatment68 or to optimizing therapeutic 
microbiota for functions such as pathogen suppres-
sion69 or immune system modulation70. Models also 
pinpoint knowledge gaps: a deviation of experimental 
observations from model expectations implies a lack of 
understanding, necessitating further experiments and 
adjustments. An example is the genome-scale metabolic 
model of a microorganism. If the model fails to describe 
an observed physiology (for example, growth on for-
mate), this may point to incomplete or erroneous gene 
annotations71. In addition, models enable exploring eco-
system properties that are hard to gauge experimentally. 
For example, a mathematical analysis of interaction net-
works has linked community stability to the proportion 
of negative interactions such as competition72. Finally, 
models can suggest the mechanisms underlying obser-
vations. Alternative gut community types73,74 are a good 
case in point: model simulations have suggested multi-
stability75,76, priority effects (the exclusion of competitors 
by species arriving first)77 or differences in water uptake 
and nutrient influx in the colon78 as possible drivers of 
different community compositions. Another example is 
a spatial colon model that explains the high diversity in 
the colon through a combination of cross-feeding and 
spatial stratification79.

Microbial communities can be modelled at differ-
ent levels of resolution, ranging from metabolic models 

that take the internal metabolism of every community 
member into account, to topological models (that is, 
networks) that represent community members as nodes 
and their interactions as directed or undirected edges80–82 
(see the overview in Table 1). Modelling approaches dif-
fer in their ability to account for the factors that shape 
community dynamics; for example, the generalized 
Lotka–Volterra (gLV) model, which describes com-
munity dynamics as a function of growth rates and 
species interactions, cannot predict the impact of spa-
tial structure on the dynamics. Modelling approaches 
also differ in their treatment of causality: metabolic 
and kinetic models describe the mechanism underlying 
metabolite-mediated interactions such as cross-feeding, 
whereas the gLV model relies on generic interaction 
coefficients83,84. In vitro experiments are required in 
order to benchmark and compare different modelling 
approaches, to find an optimal compromise between 
prediction accuracy and the number of parameters.

Fitting the neutral model, which neglects species inter-
actions, and the gLV model to faecal sequencing data led 
to the conclusion that gut microbial community dynam-
ics are not neutral, but can be described by the gLV model 
to some extent68,69,85. Parameterizing the gLV model ena-
bles the inference of ecological interactions directly from 
sequencing data, but this technique faces substantial 
challenges. For example, interaction inference requires 
densely sampled time series data and is, for the moment, 
limited to the most abundant species86. Alternatively, 
ecological interactions can be obtained from metabolic 
models by comparing growth rates in monocultures and 
co-cultures in silico87; however, the accuracy of these 
predicted interactions has not yet been assessed system-
atically. Following this approach, the anoxic gut environ-
ment was predicted to induce mutualism88,89. Metabolic 
models require metabolic reconstructions, which can be 
obtained automatically from the genome within min-
utes90,91, but take several months of curation effort to 
refine71. The AGORA database offers semi-curated met-
abolic reconstructions for 773 gut bacteria92. Given the 
challenges of obtaining an accurate metabolic reconstruc-
tion, experimental validation with growth data collected 
for a range of substrates is essential.

When applying community models to the human 
gut microbiota in vivo, a number of challenges have to 
be overcome. Hundreds of species live in the human 
gut28, each of which has a specific pH optimum, par-
ticular consumption and production kinetics for a 
range of metabolites, and specific interactions with 
other gut microorganisms and the human host. Spatial 
structure, such as the mucus layer and food particles 
as well as gradients, influences community dynamics.  
In addition, the gut ecosystem is not static, but varies 
over time as conditions change and strains immigrate, 
are lost or evolve. However, a model has to reduce system 
complexity in order to be useful. In vitro experiments 
help pinpoint the most relevant processes while con-
trolling confounding factors and enable systematically 
measuring model parameters. For example, measured 
growth rates of gut bacteria were used to test and sub-
sequently to refine metabolic reconstructions15. The 
large species number in the human gut is challenging 

Dilution-to-extinction
Serial dilution of a microbial 
sample to extremely low 
densities that allow the 
isolation of single cells.
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not only because of the amount of work to character-
ize their physiology, but also because the number of 
all possible interactions scales exponentially with the 
species number. Many models assume that community 
dynamics can be described in terms of pair-wise interac-
tions (which scale only quadratically with species num-
ber), and thus ignore interactions involving more than 
two species. Two different studies tested whether this 
simplifying assumption holds, by modelling observed 
community dynamics using parameters obtained from 
monocultures and co-cultures38,43. The studies both 
revealed that the dynamics of the community could be 
predicted from co-cultures, thereby ruling out a strong 
effect of higher-order interactions. Another study 
reduced species number further by grouping strains 
into guilds based on their functional role (for example, 
non-butyrate-forming fibre degraders) and was able 
to correctly predict the response of these guilds to pH 
change in continuous bioreactors seeded with faecal 
samples83. In vitro experiments and modelling strategies 

such as these are an important step towards predictive 
modelling in vivo.

Future strategies
Synthetic gut microbial communities will improve our 
understanding of emergent properties, from bottom-up 
intercellular processes (such as cross-feeding, syntro-
phy and auxotrophy) to top-down community pro-
cesses (such as community structure and resilience). 
So far, in vitro batch trial experiments with defined 
gut cultures (such as monocultures and co-cultures) 
have elucidated potential intercellular interactions and 
in vitro systems, allowing partial simulation of the con-
ditions in the human gastrointestinal tract and yielding 
first insights into the full-ecosystem processes. Key to 
gaining a mechanistic understanding of the human gut 
ecosystem will be extensive, well-documented culture 
collections of human microbiota members used in 
in vitro ecology experiments feeding into and driven 
by mathematical models.

Table 1 | Selected mathematical modelling approaches applied to the human gut microbiota

Modelling 
approacha

Summary Requirements Assumptions and 
limitations

Strengths Remarks and 
references

Metabolic models The flow of 
metabolites through 
each reaction in each 
species is determined 
such that an objective 
function (for example, 
biomass production) 
is optimized

Metabolic 
reconstruction for each 
community member

Metabolism is assumed 
to be at steady state. 
The objective function 
is difficult to define. 
High-quality metabolic 
reconstruction requires 
a large percentage of 
annotated genes and 
labour-intensive curation

Metabolite-mediated 
interaction 
mechanisms 
are modelled at 
the enzymatic 
level. Medium 
composition is 
taken into account. 
Meta-omics data can 
be integrated

By default the model 
is static, but dynamic 
extensions exist118

Kinetic models The change of species 
abundances and 
concentrations of key 
metabolites over time 
is described

Production and 
consumption rates 
for key metabolites, 
maximal specific 
growth rates, Monod 
(half-saturation) 
constants

The model assumes that 
growth is limited only by 
the substrates considered 
in the growth function and 
that model parameters do 
not change

Metabolite-mediated 
interaction 
mechanisms are 
taken into account

Model can be extended 
to work with groups of 
species83

Generalized 
Lotka–Volterra 
model

The change of species 
abundances over time 
is described at the 
level of populations

Growth rates and 
interaction matrix

The model assumes that 
higher-order interactions 
(involving more than two 
species) do not matter. 
The effect of interaction 
partners is assumed to 
scale linearly with their 
abundance (no saturation) 
and to be additive. 
Interaction strengths are 
assumed to be constant

This model requires 
comparatively few 
parameters and no 
curation

Interaction mechanism 
is not modelled 
explicitly. Model 
can be extended 
to integrate 
environmental 
effects119

Neutral model The change of species 
abundances over time 
is described at the 
level of individuals

Number of individuals 
in the local and in 
the metacommunity , 
immigration rate, death 
rate, speciation rate

Growth rates do not 
differ between species. 
Interactions do not affect 
community dynamics

The neutral model 
can be used as a 
null model to test 
the importance of 
interactions

Model can be extended 
to cover different 
spatial structures120

Network 
(topological 
model)

Species are 
represented as nodes, 
and their interactions 
as directed or 
undirected edges

Ecological interactions 
between species, 
and optionally their 
strengths

The model is static. 
Interactions and their 
strengths are assumed not 
to change

The model is 
parameter-free

More validation will  
be required in order  
to learn the extent to  
which ecological 
networks capture 
the properties of real 
ecosystems121,122

aOverview of microbial community modelling approaches mentioned in the main text. The list is not comprehensive; for a more systematic and detailed review of 
microbial community modelling approaches, see ref.81.
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Specifically, for the gut ecosystem, a priority will 
be to repurpose existing technologies to enable paral-
lel anaerobic fermentation and allow high-throughput 
analyses. Many parallel bioreactors are coming on the 
market to meet this demand, but few have the option 
to add gut-specific functions, such as the addition of 
human cells. In this respect, co-development between 
biotechnology companies and academia, could be an 
option. Lastly, microfluidics also holds promise as a 
high-throughput method, but it is in very early develop-
ment67. Given the potentially wide applications of anaer-
obic microbiota-oriented high-throughput technologies, 
ranging from health therapeutics to industrial bioreac-
tors, innovation interest is likely to increase substantially 
in the coming years.

Once sufficient high-throughput capacity has been 
developed, we envision a consistent feedback loop 

between mathematical modelling and culturing, in 
which mathematical models guide culturing efforts 
through hypothesis generation, and culturing results 
feed back to generate new models (Fig. 4). The current 
mathematical models are grounded by current culture 
collections, which are biased by the source of the micro-
bial isolates. Efforts to study the gut microbiota have 
mostly focused on faecal samples collected from Western 
individuals. To ensure that the global human micro
biota diversity is properly captured and framed, however, 
worldwide sampling and quantitative profiling93 of pop-
ulations should be performed and coupled to metadata  
collection (for example, covering dietary records, immuno
logical parameters and xenobiotic use), so that we can 
use these samples and sequencing data, respectively,  
to extend the known taxa and culture collections and to 
refine mathematical models. In addition to the impact 
of growing culture collections, mathematical models will 
continuously be refined through studies of ecological 
interactions, growth parameters, nutritional depend-
encies and other properties, and will be complemented 
by human and animal intervention and perturbation 
studies14 that will further inform the models and enable 
better incorporation of the host context.

Cycling through this loop will lead to a deeper func-
tional and systemic understanding of the gut ecosystem 
and guide the development of novel modulation strate
gies through, for example, synthetic probiotics and 
small molecules. Once modulation strategies have been 
properly evaluated and tested in vivo in animal models, 
human clinical trials will be the ultimate stepping stone 
towards pharmaceutical use.

In summary, the human gut is a complex ecosystem 
for which modulation strategies can be envisaged, but 
a mechanistic understanding is needed of the intricate 
interactions that drive its ecology. Given the vast array of  
metabolic activities and multiple points of interaction  
of the gut microbiota with the human host, the opportu-
nities for health-promoting interventions are bountiful. 
The key steps towards the development of a functional 
model of the colon ecosystem that can be used for the 
design of therapeutic solutions appear all to be in place, 
but they have yet to be aligned and combined. Synthetic 
ecology holds promise as the road to a renaissance in 
human microbiota-based therapeutics for health and 
well-being.
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Fig. 4 | Connections between different types of human gut microbiota models. 
Through refinement, a continuous feedback loop between mathematic models and 
in vitro culture systems will enable both a better understanding of the human gut system 
and the development of applications.
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