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Abstract

The oxyhemoglobin dissociation curve describes the relationship between the partial pressure of oxygen and the percent
of hemoglobin saturated with oxygen and varies with chemical and physical factors that differ for every patient. If
variability could be determined, patient-specific oxygen therapy could be administered. We have developed a procedure
for characterizing variations in the oxygen dissociation curve. The purpose of this study was to validate this procedure in
surgical patients. The procedure uses an automated system to alter oxygen therapy during surgery, within safe operational
levels, and fit to Hill’s equation non-invasive measurements of end-tidal oxygen and peripheral pulse oxygen saturation.
The best-fit parameters for the Hill equation, estimated by iterative least squares, provide an apparent dissociation curve,
meaningful of the patient-specific pulse oximeter response. Thirty-nine patients participated in this study. Using patient-
specific parameter values increases correlation when compared with standard values. The procedure improved the model fit
of patient saturation values significantly in 19 patients. This paper has demonstrated a procedure for determining patient-
specific pulse oximeter response. This procedure determined best-fit parameters resulting in a significantly improved fit
when compared with standard values. These best-fit parameters increased the coefficient of determination R? in all cases.

Keywords Subject-specific modeling - Non-linear least-squares - Oxygen saturation response - The Hill equation

1 Introduction

The oxyhemoglobin dissociation curve (ODC) describes the
relationship between the percent of hemoglobin saturated
with oxygen (SHbO2) and the partial pressure of oxygen
(PO2) in the blood [8, 9, 13, 19, 23]. Due to the allosteric
effects of oxygen binding with hemoglobin’s four oxygen
binding sites, this response is a sigmoidal curve [3, 20].
Due to hemoglobin’s affinity for oxygen, this sigmoid
relationship plateaus at a PO2 of approximately 150 mm
Hg in healthy patients [19]. Above 150 mm Hg, the
majority of hemoglobin binding sites are fully saturated
with oxygen, and thus SHbO2 is minimally responsive to
changes in PO2 while below 150 mm Hg, SHbO?2 is highly
responsive to changes in PO2 [1]. These characteristics of
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oxyhemoglobin’s response to PO2 permit oxygen uptake in
the lungs, at high PO2, and oxygen unloading near tissue, at
low PO2, and are vital to oxygen transport in the body [15].
Besides oxygen, hemoglobin is responsive to other
notable allosteric effectors [9, 25, 27, 28]. These include
chemical factors in the blood such as hydrogen ions (pH),
carbon dioxide (CO2), and 2,3-Diphosphoglycerate (2,3-
DPG) [5]. Hemoglobin’s allosteric effectors also include the
physical factor of temperature (7). Although the effects of
factors are well characterized, the values of the factors are
not clinically available in many patients. Patient to patient
variation in the concentrations and levels of these effectors,
in turn, can effect hemoglobin’s affinity for oxygen.
Differences in oxygen affinity can affect the position and
shape of the ODC, with increased oxygen affinity shifting
the curve to the left (lower PO2) and decreased affinity
shifting the curve to the right [19]. Thus, hemoglobin’s
affinity for oxygen varies from patient to patient [26].
Variations in oxygen affinity change the shift and shape
of the ODC, including the PO2 at which the ODC transitions
from a plateau to a steep slope. This patient-to-patient
variability impacts the level of oxygen therapy required to
prevent desaturation. However, if a patient-specific ODC
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could be generated, the transition from the plateau to sharp
curve could be characterized, and patient-specific oxygen
therapy could be administered, preventing desaturation. One
possibility for determining patient variability is to create
an automated procedure which uses a set of PO2 and
pulse oxygen saturation (SpO2) value pairs to fit a patient-
specific ODC. We have developed such a procedure which
is based on an automated oxygen delivery system and Hill’s
equation.

The procedure measures several levels of oxygen
saturation by varying oxygen therapy using an automated
system. Best-fit parameters (Psg, n, K) for corresponding
saturation and oxygen measurements are then found using
an iterative minimal least-squares technique. Once these
parameters are found, the procedure constructs an apparent
patient-specific ODC from which important characteristics,
including the transition from the plateau to the steep slope
of the curve, can be obtained. Extrapolation of the apparent
ODC could also be used to predict a patient-specific
response to different levels of oxygen therapy.

The objective of this study was to validate the procedure
for determining patient-specific pulse oxygen saturation
response. If validated, the procedure could characterize
patient-specific oxyhemoglobin using an automated system
and non-invasive techniques.

2 Methods

This study was performed in accordance with the 1964
Helsinki declaration and its later amendments or compara-
ble standards. Study approval came from the University of
Utah Institutional Review Board. All patients participated
with written informed consent.

2.1 Procedure for characterizing oxygen saturation
response

The procedure for characterizing pulse oxygen saturation
response uses an automated system to alter oxygen therapy
to generate patient-specific oxygen flow and saturation data
pairs. Hill’s equation is then used to characterize the data set
for each patient. To determine oxygen saturation response,
the automated system administers different levels of oxygen
therapy gathering measurements for oxygen and saturation
levels at each level. The procedure then uses iterative least
squares residual techniques to find the best-fit curve for the
gathered measurements.

2.1.1 Automated oxygen therapy system

Figure 1 shows a schematic diagram of the automated oxy-
gen therapy system which includes a laptop computer for
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collecting data. The automated system varies oxygen flow
rate using a proportional solenoid valve (MD PRO, Parker
Hannifin, Hollis, NH) connected to a source of compressed
oxygen. A laptop computer collects end-tidal oxygen (etO2)
measurements from a gas analyzer (CapnoMAC, Datex,
Helsinki, Finland). The laptop computer also collects SpO2
from a pulse oximeter (LNCSTM, Masimo, Irvine, CA).
The system monitors nasal pressure to determine breath
phase and discontinues oxygen flow during exhalation so
that etO2 measurements are not contaminated by supple-
mental oxygen [18, 29]. Further information describing the
method used to deliver oxygen and measure etO2 is given in
Section 2.3. An automated oxygen therapy system with sim-
ilar underlying characteristics and developed by the authors
has been described previously, see [7] and [6] for a detailed
description.

2.1.2 Theoretical aspects

While varying oxygen, the procedure collects pairs of
etO2 and SpO2 measurements. Since the system varies
oxygen, a range of SpO2 measurements can be measured
to characterize a patient’s ODC. After collecting pairs of
measurements, the procedure fits the data to Hill’s equation:

(PO2/Psp)"

SHbO2 = f(PO2) = K ———-20°
1+ (P 02/ Psy)"

ey

where Psg is the PO2 at which 50% of hemoglobin are
saturated with oxygen (SHbO2 = 50%), n is the Hill
coefficient, and K is the maximum saturation possible.

Hill’s Equation can be used to calculate SHbO2 for any
given PO2. Its three variables can be used to determine ODC
shift (Psg), slope (n), and offset (K). The value of these
three variables depends on the conformation of hemoglobin
and thus varies between patients.
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2.1.3 Determining the best-fit parameters

The procedure finds the best-fit Psg, n, and K values
for each volunteer using iterative non-linear least-squares
fitting as implemented in the least_squares function of
the optimize module in SciPy (SciPy, v1.1.0, The SciPy
community) [21].

The solution to a non-linear least-squares problem is a
local minimizer of the problem:

m

min :Zﬁu)z}, 2
i=1

where m is the number of residuals [2]. For analyzing pulse

oxygen saturation response, the problem is of the form:

(PO2;i/Pso)"
14+ (PO2;/Ps5p)*

where P O2; (independent) and SpO2; (dependent) are
the ith measured SpO2 and etO2 points, respectively.
The patient-specific parameters are contained in X =
{Ps50,n, K}. The gradient vector elements in parameter
space, which are helpful for computing the minimization
problem, can be found using the following equations:

fix) =K

Sp02;, 3

af; Kn (PO2;/Psp)"

Jop= —/— = —— — “4)
0 Pso Pso [1 4 (P O2;/Psp)"]

i , (P 02;/Psp)"

Ji1 = Pl Klog(POz’/PSO)[l+(P02i/P5o)"]2 ®)
of; P 02;/Psp)"

iy = i ( /Ps0) ©)

9K 1+ (PO2:i/Psy)"

where log is the natural logarithm and values in x are all
positive. The constraints for x are shown in Table 1.

2.1.4 Estimating oxygen saturation

After the best-fit parameters have been determined using the
methods described in Section 2.1.3, the procedure proceeds
by estimating oxygen saturation. This is done using the best-
fit parameters, etO2 values, and Eq. 1. End-tidal oxygen
values are converted to PO2 by compensating for local
atmospheric pressure (640 mm Hg) and the partial pressure
of water vapor at 37° C (47 mm Hg):

P02 = (640 — 47) 192 m %
= 100% T8

Table 1 Constraints for x = {Psg, n, K}

Parameter Range Units

Psg 15-75 mm Hg
n 1.5-3.9 Unitless
K 0.94-1.0 Unitless

2.2 Model fit assessment

Model fit assessment methods can be used to quantify
how well the model performs. These assessment methods
analyze how well the model describes data (descriptive
error) and how well it predicts data (predictive error). For
modeling oxygen saturation response, model description
and prediction error can be analyzed to validate the ability of
the procedure to fit and predict SpO2. This assessment was
performed as described in the previous work of Dubreuil et
al. and Donders et al. [10, 12].

Descriptive error can be determined by using the
coefficient of determination € po:

YO = fi))?
i1 i =2
where f is the Hill equation with best-fit parameters for
the particular data set x, f(x;) represents model estimates
computed using f and x;, y; are observed measurements,

and ¥y is the mean of all the y; measurements:

®)

€R2=1_

n
y= % > i )
i=1
Here €2 is descriptive because it represents the ratio of
residual variance to total variance.
Leave-one-out cross-validation can be performed by
calculating the predictive coefficient of determination € 2:

S O = feiy(xi))?

Yii—=mr
where f_;(x;) represents the value at x; produced when
the best-fit parameters were calculated by leaving out x;.
Cross-validation calculates €2 by using Eq. 10 to loop
through each measurement for a given data set, leaving
out one data point each time, using the remaining data
points to determine the best-fit model parameters, and using
those best-fit parameters to predict the point left out. €2
is predictive because it represents the ratio of predictive
variance to total variance.

€gr=1- (10)

2.3 Study setup and protocol

Participants were selected from surgical patients at the Uni-
versity of Utah Moran Eye Center. Potential participants
were selected by a chart review before surgery. Eligible
participants had an adult American Society of Anesthesiol-
ogists physical status of I-III and were aged > 18 years.
Patients with a baseline SpO2 < 93% on room air, surgery
scheduled for less than 20 min, ARDS, lung disease, car-
diovascular disease, or pregnancy were not eligible to
participate.

Before the surgery, participants were fitted with a
sampling nasal cannula and the automated system’s pulse
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oximeter. The sampling line of the nasal cannula was
connected to the system’s gas analyzer. During the
procedure, the automated system administered oxygen at
varying flow rates. Each flow rate was administered for
2 min (the time required for measurements to stabilize
following a change in flow rate) after which etO2 and SpO2
were recorded by analyzing waveforms collected at 100
Hz by the laptop computer. Given that surgery time would
vary between patients, we expected to acquire a different
number of paired measurements for each patient. Once
the surgery concluded and all paired measurements for a
patient were collected, data analysis proceeded as described
in Sections 2.1.3 and 2.1.4. Once best-fit parameters had
been determined and oxygen saturation estimated, model fit
was assessed as described in Section 2.2. For comparison,
fit for a model using generic parameter values, X =
{26.8,2.7, 1.0}, was also assessed using Eq. 8.

2.4 Statistical analysis

Statistical analysis was performed using Python (v2.7.14,
Python Software Foundation, Beaverton, OR). Median
epsilonp: and epsilonQ? across all patients was calcu-
lated. The interquartile range (IQR), including 25th and 75th
percentiles, was used to report uncertainty.

Differences between measurements y; and model output
f(xi) were compared for both descriptive and predictive
modeling using limits of agreement (LoA) methods. The
absolute difference between measurements y; and model
output f(x;)/f(—i)(x;) is the residual and was calculated for
all measurements:

J (i) = yi an

fen(xi) — yi (12)
LoA methods calculated the mean difference of all data
points using Eqgs. 11 or 12. Ninety-five percent LoA were
calculated as &£ 1.96 SD where SD is the standard deviation
of the difference between all data points. To determine
differences between predictive and descriptive modeling,
the LoA for descriptive and predictive modeling were
compared.

For each patient, an F-test was used to determine if the
specific fit improved model fit significantly compared with
a standard ODC. The F-statistic F' was calculated as:

( RSSstd_RSSspec )
_ Pspec —Pstd
F= (RSSW.) ’
n_pspe('
where RSSgq and RSSsp.. are the residual sum of
squares (RSS) when using the standard and specific curves

respectively, pgyq = 0 and pgpec = 3 are the number of
parameters in the standard and specific models respectively,

13)
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and n is the number of data points. The specific model fit
was significantly improved if F calculated using Eq. 13
was greater than the critical value of the F-distribution with
(Pspec — Pstd» 1 — Dspec) degrees of freedom and o = 0.05.

3 Results

Thirty-nine patients participated in this study. A total of 498
data points were evaluated with an average of 12 data points
per patient. The mean values as well as standard deviation
(SD) and range for Psq, n, and K are shown in Table 2. For
19 of the 39 patients, a specific ODC improved model fit
significantly (F > F-critical).

Figure 2 shows the model fit for a typical patient. The
best-fit parameters for this particular patient were x =
{24.9, 1.9, 0.99}. When performing leave-one-out analysis,
the mean £ SD for the best-fit parameters was x = {25.0 £
1.6,1.9£0.1,0.99 £ 0.001}. Using a patient-specific ODC
to fit patient data points increased correlation (ez2, 0.94
vs. —2.36, specific vs. generic) and improved model fit
significantly (F > F-critical). Leave-one-out analysis also
showed increased correlation (€52 = 0.92). This patient-
specific curve shows how oxygen saturation would begin
to drop long before a standard ODC would predict. For
example, oxygen saturation at 70 mm Hg for the standard
curve is 0.93 while for the patient-specific curve, it is 0.87.

The coefficient of determination €2 for all patients is
shown in Fig. 3. Using patient-specific parameter values
resulted in increased correlation compared with standard
values (median (IQR) €p2, 0.42 (0.63) vs. —0.22 (2.08),
specific vs. standard). The median difference (specific
- standard) in e€p> for paired data was 0.85 with an
interquartile range from 0.29 to 1.90. The median absolute
difference between modeled data points f(x;) and observed
measurements y; for all patients was —0.0005 SpO2. The
95% LoA were from —0.0149 to 0.0140 SpO2 (Fig. 4).

The predictive coefficient of determination €2 for all
patients is shown in Fig. 3. The median (IQR) € > was 0.07
(0.81). The median absolute difference between predicted
data points f(_;)(x;) and observed measurements y; for
all patients was —0.0005 SpO2. The 95% LoA were from
—0.0189 to 0.0179 SpO2 (Fig. 4).

Table2 Mean, variability, and dispersion of optimal values for Psq, n,
and K

Parameter Mean (SD) Range (min.—max.) Units

Psg 32.0 (14.4) 53.4 (15.0-68.4) mm Hg
n 3.2(0.8) 2.2 (1.67-3.9) Unitless
K 1.00 (0.01) 0.06 (0.94-1.00) Unitless
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Fig.2 Model fit and prediction
for a selected patient. For this
particular patient, the best-fit

Patient 29 (N=21)

values were 1.00 1.00
x = {24.9,1.9,0.99}.
Correlation increased when
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Fig. 3 Coefficient of determination €2 /€2 when model parameters
are set to standard values compared with when model parameters are
set to best-fit values. The upper panel shows an expanded view of
all €g2/€y2 values while the lower panel shows a magnified view

Patient Number

centered on the €2 /€2 range from 0 to 1. Here specific refers to
an ODC generated using patient-specific measurements and predicted
refers to an ODC generated using leave-one-out analysis of those same
measurements
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Fig.4 Bland-Altman analysis Descriptive Predictive
for descriptive and predictive
modeling. For descriptive 0.06 - i
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4 Discussion

This manuscript describes a procedure for determining an
apparent patient-specific pulse oxygen saturation response.
Results have shown that the procedure improved the model
fit of patient saturation values significantly (F > F-critical)
in 19 of 39 patients. Results have also shown that using
patient-specific parameter values increases correlation when
compared with standard values. The predictive capability of
the procedure was also tested, and results show that the LoA
when predicting were within &£ 0.02 SpO2.

These results demonstrate the ability of the procedure
to provide a more accurate estimate of patient oxygen
saturation response when compared with using standard
parameter values. This accurate estimate could help
determine a patient’s specific response and thus define the
PO2 at which a patient’s SpO2 would begin to decline
rapidly. Further, this accurate estimate could be used to
describe the decline in SpO2 with time.

The procedure improved model fit significantly in only
19 of 39 patients. However, the accuracy of fit in the
remaining 20 patients was still increased compared with the
standard ODC (although not significantly). This result does
not say that the specific fit for the remaining 20 patients
was not accurate but rather that using the standard ODC
for those 20 patients would be sufficient. This study has
provided a general idea of the usefulness of the procedure
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fi—i(x;) (Predicted Sp0O2) [-]

in its patient population. For this population, basing clinical
decision-making on the standard ODC is insufficient for
approximately half of patients. Instead, for these patients,
determining a specific ODC is necessary for accurately
locating relevant portions of their ODC.

Previous related research has studied how accurately
SpO2 predicts arterial partial pressure of oxygen (PaO2)
[4, 17]. Brockway et al. found that PaO2 correlated
significantly with SpO2. This research has added to
these results by demonstrating increased correlation when
determining patient-specific parameter values.

As expected, the mean best-fit values for model
parameters (Table 2) compared well with typical standard
values. However, a wide range of parameter values was
observed when considering the patient population as
a whole. This wide range demonstrates the utility in
determining patient-specific parameter values to predict
oxygen saturation response.

For some of the parameters, the upper or lower parameter
constraint was reached in at least one patient. Two bounds
of particular interest for which this occurred were the
lower bound of P50 = 15 and the upper bound of
n = 3.9. Had the constraint window for these parameters
been broader correlation may have been improved but the
parameter value may not have been physiologically realistic.
This demonstrates the balance between improved model
fit and physiologically realistic results. The proper range
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for realistic constraint windows on P50, n, and K should
be explored further and considered in future research on
oxygen saturation response.

When predicting SpO2, as simulated using leave-one-
out cross-validation, this procedure exhibited larger LoA
compared with descriptive modeling. This result indicates
that the predictive capability of the procedure depends on
the number of measurements acquired, with the predictive
capability of the procedure increasing with the number
of measurements. Therefore, the number of measurements
acquired may influence the accuracy of the procedure’s
predictions and thus the procedure should be used with
care when circumstance only allows for only a few
paired measurements. However, further research should be
conducted to determine the predictive capability of the
procedure when using measurements with less error.

Prophylactic administration of supplemental oxygen may
impair pulse oximetry’s clinical utility [11, 14, 22]. By
determining a subject-specific oxygen saturation response,
the procedure could be used to individualize oxygen
therapy to maintain a target oxygen saturation range. This
would enable elevating PO2 to levels required to maintain
adequate oxygen saturation, but no higher. Since PO2
levels would not be elevated, pulse oximetry could then
indicate hypoventilation earlier. Further, the subject-specific
response determined using the procedure could determine
whether oxygen administered is even required. If the patient
exhibited increased oxygen affinity, this could indicate that
oxygen therapy is not required.

The procedure measures two different types of data
pairs: central evaluation of the partial pressure of oxygen
(etO2) and peripheral evaluation of oxyhemoglobin satu-
ration (Sp0O2). The peripheral and central chemical and
physical conditions of pH, PCO2, [DPG], and T are likely
significantly different with some saturation loss periph-
erally. Hypothetically, this could have resulted in the K
estimates that were less than 1.0. If the saturation loss
peripherally was 2% then only a maximum peripheral satu-
ration of 98% could be reached regardless of the PO2 value
(even though central saturation did reach 100%).

The procedure described here measures etO2 as a non-
invasive representation of PaO2. These two measurements
have been shown to agree well [24] in healthy patients with
minimal alveolar-arterial (A-a) oxygen gradient. However,
since the procedure measures etO2, if an excess of oxygen
is delivered to the patient, an A-a gradient could be
artifactually created despite normal lung function. This
would then in turn affect the accuracy of the procedure by
lowing the value of K.

The procedure measurements may not yield accurate
oxygen saturation response in patient populations with
significant A-a gradient such as with lung disease that
leads to significant ventilation-perfusion inhomogeneities,

and substantial physiological shunt. For these populations,
the measurements used for the procedure in this study would
not be applicable. Instead oxygen saturation and partial
pressure of oxygen measurements acquired by arterial blood
gas analysis should be used instead. Conveniently the
procedure described here does not require any adjustment
to facilitate these type of measurements. These patients
could be screened by performing a careful review of the
patient’s medical history and, if necessary, analyzing one
initial pair of corresponding measurements to determine
the agreement between non-invasive and arterial blood gas
measurements.

4.1 Limitations

One limitation of the procedure is that the lowest SpO2
and PO2 values that can be measured are the subject’s
values while breathing room air. Lower values cannot be
safely obtained and administering oxygen only increases
SpO2 and PO2. Thus, when using this procedure in healthy
subjects, the apparent ODC is built using data points
measured in the hyperoxic range while the data points of
most interest are in the hypoxic range. The accuracy of using
hyperoxic data to extrapolate and predict hypoxic values in
a given patient is unknown.

The procedure measures SpO2 to represent SHbO2.
Although SpO2 measurement is less invasive, it has a
reported accuracy of £ 2-3% compared with SHbO2
which introduces measurement uncertainty. This accuracy
was unknown and not considered in the present research
and may have affected the best-fit parameters, particularly
K. The error of the procedure would be underestimated
if the statistical error in each single SpO2 measurement
was larger than the differences observed between the
consecutive levels of PO2. For example, when making
SpO2 measurements at adjacent levels of PO2, if the actual
SpO2 were 96% and 98% and the accuracy of measurement
technique were + 2%, then the window of possible reported
measurements for each measurement overlaps. In another
situation where the pulse oximeter reported a SpO2 of 98%
at 100% SHbO2, the procedure may have determined the
best-fit value of K to be 0.98. With this in consideration, the
accuracy of SpO2 may in part have affected the range of K
values observed in this study.

For the study’s statistical purposes, repeated measure-
ments were not collected within patients. Because repeated
measurements were not made, the reproducibility of the pro-
cedure has not yet been assessed. This is an important aspect
to consider given that variations in measurement uncer-
tainty with time could affect the accuracy of measurements
which will likely generate different patient-specific ODCs.
However, during clinical application, the procedure could
continuously measure SpO2 and PO2 at different oxygen
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levels, generating many more data points than were col-
lected in this study and estimating the mean SpO2 for points
measured at the same PO2.

4.2 Future research

Future research studies should extend the experimental
protocol to groups featuring significantly different pulse
oxygen saturation response to better understand the clinical
relevance of the procedure. Extending the protocol would
also allow for monitoring the goodness of fit in these
groups and provide a better understanding of the generality
of the procedure. Extending the protocol is required to
demonstrate that the performance of the procedure was not
exclusively due to the selection of patients from a healthy
population but is also useful in patient populations with
various different pulse oxygen saturation responses.

Future directions for this research would be to combine
the procedure with existing models [13, 16] to simulate
and predict oxygen saturation and time to desaturation in
patients with varying levels of respiratory drive. Predicting
the course of SpO2 for a given amount of time could
help explore and experiment with simulations on different
clinical scenarios that may not be safe to study in volunteers
or patients.

If this procedure is to be clinically useful, further studies
demonstrating its ability to extrapolate and predict the ODC
below the patient’s normoxic range should be conducted.
Non-invasive measurements are used to generate the
procedure’s apparent ODC. In further study, these patient-
specific ODCs should be compared with corresponding
ODCs generated using measurements obtained by arterial
blood gas analysis.

5 Conclusion

In summary, this paper has demonstrated and tested a
procedure for determining patient-specific pulse oxygen
saturation response. The procedure was able to determine
best-fit parameters that resulted in significantly improved
fit when compared with using standard parameter values.
These best-fit parameters increased the coefficient of
determination € R in all cases.
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